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Neil B. Christianson (a veteran of the Korean conflict) obtained an
engineering degree at Seattle University. He retired from a successful
aerospace engineering career in 1988. A simple truth, learned during
his career; one cannot engineer with theory, it requires the use of
materials with laboratory demonstrated physical characteristics.

He became interested in planetary body formation, during theheady
days of Moon walks, when he was chief engineer for the Titan Il
VWeapon System. The condensed, cold-core model held promise, so

he worked out anearth model condensed from the primary constituents

of molecular clouds. However, his cold-core model failed to meet the low moment of inertia
needed to keep earth from flattening.

This impediment bothered him, because the workings of a condensed, cold-core model
matched well events reported by paleontologists, archaeologists, geologists and historians.
They also matched well events reported in the Bible, including future events foretold by the
prophets. Further, they brought reason to the Global Warming debate by introducing a
natural heat pump cycle of lce Ages and warming periods.

Fortunately, he finally realized the packing effect of gravity had never bheen calculated.
His calculations show the validity of a condensed, cold-core model. To read his paper
Click mouse;or.to view his PowerPoint presentation Click:

http://members.cox.net/nchristiansonb/part1.ppt
Your comments can be sent to: To read, “WHAT THE ANCIENTS TAUGHT,” go to:
xtainson@juno.com http://members.cox.net/nchristianson4/Ancients.ppt
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AMISSED VECTOR

by
Neil N. Christianson

Two hundred years ago. faulty reasoning led scientists to believe Sir Isaac Newton's
calculations show vectors of horizontal gravity cancel each other out.

But, Newton never calculated gravitational forces at work within the earth. He confined his
work to the flight of cannon balls and orbits of satellites. He sidelined horizontal gravita-
tional vectors because they had no effect on orbiting objects. This led to a misunderstand-
ing that later caused scientists, who were trying to determine earth’'s moment of inertia, to
identify the vertical gravitational vector as the only force needed to be overcome by an out-
ward push of earth’s rotation to cause her to flatten.

In the hydrostatic model of earth’s cross section, the absolute difference (C-A) be-
tween earth’'s moments of inertia about polar and equatorial axes are expressed in terms
of geodetically determined flattening'. Her flattening (7 is given by the following equation:

f =1.5(C-AlMa?) + 0.5{{*}23195}: C Polar moment of inertia
A Equatorial moment of inertia
a Equatorial radius
w Earth’'s rate of rotation
d. Vertical gravity at the equator



Since (C-A)/Ma® has been determined from satellite orbits with great precision, that
data is now used in geodesy. Therefore, the approximate value for the second half of the
equation—rate of rotation (w) squared, multiplied by equatorial radius (a), divided by ver-
tical gravity at the equator (g=)—is believed to set the flattening experienced by the earth.

The moment of inertia of a uniform sphere is 0.4Ma?; so, the value for C (derived af-
ter incorporating the fractional differences in the principal moments of inertia of the earth)
of 0.33078Ma? (80.378 x 10°® kg m?) sets a vital boundary condition on the radial density
profile within the earth. As a result, earth scientists concluded that earth’s low moment of
inertia required the bulk of her mass to be located in her core. Thus, they abandoned the
ancient cold-core model for a hot-core model—wherein heavy materials sink deep into
her molten core—driven there by the pull of gravity.

Gravity is a strange phenomena—it always pulls. Earth’s gravity pulls the moon to-
ward earth with the same amount of force that moon's gravity pulls the earth toward the
moon. It is an elastic force that can best be visualized as an invisible rubber cord pulling
equally on the two bodies in question. Since it is an elastic force, it can never be can-
celled out by another elastic force (balanced, but never cancelled out, as has been
taught).

Applying gravity's elastic nature to gram masses inside the earth, suggests gravity’'s
horizontal vectors work in a manner similar to the pull exerted by molecules in the skin of
a rubber balloon. It seemed reasonable then that the strength of pull (packing effect) by a
gram mass at any depth within an orb would be obtained by rerunning calculations similar
to the ones Newton used to prove that an orb’s total mass can be considered to be lo-
cated at the orb’'s center—a very tedious trigonometric calculation.



To analysis the packing vectors at work within the earth, | used three models—
cold-core, hot-core, and average density. Each model uses the same eighteen divi-
sions of seismically known shells: crust, lithosphere, asthenosphere, 1st bonded shell,
1st transition (phase change), 2nd bonded shell, 2nd transition, five divisions of the 3rd
bonded shell, four divisions of the outer core and two divisions of the inner core. Ex-
cept for the average model, which has the same density for each of its shells, density
is proportional to seismic wave speeds in the cold-core model and, as required above,
density is concentrated in the core in the hot-core model. All models have a radius of
6371 km and all have the same total mass. See helow.

Shell Cold-core model Hot-core model 23 Average model
Padius  Radius | @ giec Mkg10® Ikgm? 10%] o gfec Mkg 10% [kgm? 10% | Mkg 107 1kg m? 10%
eags  Ba71 289582 018470 D44478 | 2185 013227 03572 033895  0.91001
Eags  B359 [501853 171570 477556 [ 3350 114628 3.0540 188548 502850
£.204 2071 |454448 384734 §.87278 3425 289830 74380 4 BEE798 11.97970
6073 B.116 |472950 228453 562413 | 3475 168591 4.1320 2 B7569 655870
5 56 BO11 |528128 1.16309 2 .84029 J.4826  0.79366 1.8980 1.24175 7 BBE21
' 5961 |585933 6.03012  13.72360 3825 383850 B.8530 567590 12.91800
S 5721 6.25345 1.27408 278727 47250 (0.86643 1.8740 1.12435 243185
ey 5871 |BB2130 761090 1548350 | 4500 517258 105200 £.33945 12.89740
g 5971 |6.77580 1117420 1961140 | 4750 783338 13,7500 9.09571 15.96340
G 4871 708482 B4B852 13.57200 5015 G.73547 9.6340 740719 10.59540
4830 onr |7ag210 7a72e1 808072 | 5215 557178 6.3460 5pa245  B.71178
ol L 4671 | 7B9A58  S.05651 4 AB060 5400 354678 3.2130 3. B2241 3.2B183
3333 1405 | 108151 0.79760 054958 | 10300 773927 £.3310 4 14400 7.85487
S5 2800 | 108253 055423 0.26527 | 11500 565737  2.6060 2.82364 1.30060
5045 2300 1089830 0.33374 0.09231 | 11600 352483 0.9749 1.67530 0.46355
1495 1700 |1.108B1  0.1444B 0.02141 | 12038 156806 0.2326 0.71850 0.10853
1mos 1217 1277 007770 0.00533 | 12351  0.7553 0.0517 0.33730 0.02313
0zcq 0700 |13a054  0.01840 000380 | 12701  0.18248 0.0035 0.07320 0.00155
' p.ooo | 141880  0.00000 0.00000 | 13000 000000 0.0000 0.00000 0.00000
Total 5974630 103.091 Total 58.74630  B0.3800 5074300  96.89300

Eighteen separate shell divisions of the three models of earth's cross section



To fill in a mental picture of what goes on deep within the earth, with respect to
gravitational vectors, | used an adaptation of Newton's model of Thin Spherical
Shells, which he used to solve gravitational vectors acting on a small body (gram-
mass) external to earth’s surface”. That model effectively rotates the total mass of an
annulus around to a single point where the gravitational vectors merge into a single
vector (¢). This vector can then be broken into two vectors; a vertical vector (v) and a

horizontal vector (h). See sketch below.
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Just as Newton did, | set up my model's eighteen separate divisions as individual
spherical shells of zero thickness. Ninety annulus-masses for a selected shell-radius ro-
tate around to concentrate at odd (1, 3, 5 ... 177, 179) degree points. After creating
spreadsheets for each shell, | used a series of trigonometric functions to solve for hori-
zontal, as well as vertical gravity vectors. By moving the radius at which the gram-mass
is located and employing an iterative process, | solved for the vertical and horizontal
gravity vectors produced by each individual division. Resultant gravity vectors for the ra-
dius selected for the location of the gram-mass are shown below. Values for vertical
gravity in my hot-core model match well with values obtained by Adam M. Dziewonski'
(Harvard). This makes me confident that my trigonometric approach is equivalent to his
way of calculating vertical gravity for various depths within the earth.

While calculating gravitational pulls on gram masses located at various depths

within an earth model of average density, an interesting relationship popped up. At all
depths, the absolute value of vertical gravity plus the absolute value of horizontal
gravity equals twice the absolute value of vertical gravity on the orb’s surface. This
means that the surface of the earth has more than one gravitational force that must be
overcome bhefore her outward push will cause her to flatten. The determining component
of the flattening equation is the ratio of her equatorial outward push to her gravitational
pull. That ratio must be modified to include the packing effect of horizontal gravitational
pulls. Since vertical and horizontal gravities are of equal strength in the earth’s surface,
the vertical gravitational pull of gravity at the earth’s equator can be doubled to account
for the packing effect of horizontal pulls. Doubling that force changes the value of earth’s
moment of inertia to 0.4347 Ma® (105.6 x 10° kg m?) to allow the location of the bulk of
her mass in her bonded shells. Hence, a condensed, cold-core model of earth's cross
section is supported historically, physically and mathematically.



Radius

6371
6370
B365
6354
6241
6116
BO011
6861
5721
HB71
5371
4871
4371
3871
3485
2800
2300
1700
1217
rd
]

Fv cold

08331
98340
98381
98475
9.8625
0 6896
9.2305
06833
89975
00731
8.1883
B.8711
5.2188
31122
1.0304
0.8926
0.7240
0.5570
04372
026349
0.0000

Fh cold

10,0604
10,0715
101121
10.1943
10,8073
12,3340
13.0232
13,3707
148014
15.1980
164861
1829449
19 6465
201582
19.0344
16.84149
159334
164330
152446
16,1213
14 8443

F+ hot

H 8307
48327
4.8399
q.8525
45326
H 8758
H.9336
10.0280
48450
106211
H 8468
H.8203
H BEG6S
10,4320
10.6725
9.2710
7 6043
5. 7847
42214
24838
0.000o0

Fh hot

5.0351
5.0434
807356
5.1349
=BT

H7748
102814
10,2344
12 BOBE
124735
132172
14 2165
173052
197396
22,3435
25 4247
23,8435
308358
32.2407
a2 378z
32 0258

F+v awverage

4 8253
4 8263
4 8308
48343
48173
4 5648
43448
8 2707
87429
0 8248
g 2447
T.a047
67336
2 HB48
f.3613
4 4673
35435
26197
1.8740
1 0785
.000o0

Fh average

0.7BB3

9.7958

08574

9.9264
10.6533
11.89878
11.9978
12.7471
13.6600
14 0673
15.0086
16 4368
17.8048
19.9608
[ERELY
20,3327
21 06850
215241
21.8H04
218731
21.5092

Gravitational forces for the three models of earth's interior.



In addition, there long has been debate in the Halls of Astronomy as to
what triggers a cooling molecular cloud to fragment. Since horizontal gravity
within the cloud can be considered to be a packing vector it must play a partin a
cloud’s initial fragmentation; and, a fragment’s subsequent progression into a
star. My average model uses a constant density of 5.5154 g/cc for all shells.
Since it was trigonometrically (consisting of right angle triangles) derived, its re-
sults can be proportionally applied to a molecular cloud fragment by reason of
similar triangles. Hence, a molecular cloud’s central region must have a packing

vector that is at least twice as strong as vertical gravity on its surface. That pack-
ing vector would start the condensation of hydrogen, cause cloud fragmentation

and literally pull a fragment in upon itself—exactly what observers see happen-
ing.
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